
Shylock Interface Specs

V0.10 Page 1 of 28 9/12/2009

Alcinia Limited

Shylock
Interface Specification

Documentation

Technical description of interfaces between Software Systems comprising the Shylock
Billing service.

Shylock Interface Specs

V0.10 Page 2 of 28 9/12/2009

1. Revision History

Date Version Author Description

6/02/2008 V0.1 Tasos Chatzipavlou Initial creation of Documentation.

 Chapters and sections
defined.

 Writing tasks assigned.

 Introduction and glossary
outlined

7/02/2008 V0.2 Stathis Alexopoulos Revision and definition of used
services for the Front End Interface
and Network Interface.

7/02/2008 V0.3 Tasos Chatzipavlou Definition of parameters for

 Create Account

 Get Account Information

 Set Account Info

7/02/2008 V0.3a Tasos Chatzipavlou Definition of parameters for

 rest of Front End Interface
services and

 Network Interface services.

8/02/2008 V0.4 Stathis Alexopoulos Introduction of Accounting Interface.
The scope and needed services
defined.

8/02/2008 V0.5 Tasos Chatzipavlou Definition of parameters for

 Get Accounts Total

 Get Totals

10/02/2008 V0.6 Stathis Alexopoulos Redefinition of Network Interface
because of new design. Now the
interface is generic enough to hold
any kind of usage.

10/02/2008 V0.7 Tasos Chatzipavlou Definition of parameters for
Accounting Interface and for the
new Network Interface.

10/02/2008 V0.8 Stathis Alexopoulos Redefinition of customer category
design.
The design of Offers Management
leads to a total redesign of Customer
category

Shylock Interface Specs

V0.10 Page 3 of 28 9/12/2009

10/02/2008 V0.9 Stathis Alexopoulos Addition of sequence diagrams for
the generic services of Network
Interface.

10/02/2008 V0.10 Tasos Chatzipavlou Addition of short description for
each interface

10/02/2008 V0.11

Shylock Interface Specs

V0.10 Page 4 of 28 9/12/2009

2. Contents

1. Revision History ... 2

2. Contents .. 4

3. Introduction ... 6

3.1. Scope ... 6

3.2. Overview ... 6

3.3. Audience ... 7

4. Front End Interface .. 8

4.1. Create Account .. 8

4.2. Get Account Information .. 10

4.3. Set Account Info .. 11

4.4. Get Usage Events .. 12

4.5. Get Payment Events .. 14

5. Network Interface ...16

5.1. Service Availability Request .. 16

5.2. Start Service Provisioning.. 17

5.3. Service Provisioning Completed ... 18

5.4. Service Provisioning Canceled... 19

6. Accounting Interface ...20

6.1. Get Account Totals .. 20

6.2. Get Account Details... 21

6.3. Get Totals .. 22

6.4. Get All Account Totals ... 23

7. Reference ..24

7.1. Glossary ... 24

7.2. Data Types ... 25

7.3. PaymentEvent ... 26

7.4. UsageEvent ... 27

7.5. FinancialData ... 28

7.6. Example WSDL .. 29

3. Introduction

3.1. Scope

This document’s purpose is to present an initial proposal of the interfaces
that are going to be built for communication purposes between Shylock platform
and external OSS Platform.

3.2. Overview

The whole solution is based on three basic interfaces as mentioned in the

following diagram:

Front End Interface: The purpose of this interface is to provide the appropriate
methods for account manipulation (e.g. account creation. Usage events history etc)

Network Interface: The purpose of this interface is to provide the appropriate
methods for service handling, such as service availability request, service
provisioning, service expiration etc

Financing/Accounting Interface: The purpose of this interface is to provide the
appropriate methods for accounting actions such as acquiring financial and usage
data per customer for a given time period

3.3. Audience

The targeted audiences of this document are managers who want to validate
business processes against the supported features of a software system. Engineers
who want to implement specific feature on their system. Testers who want to test
the behavior between cooperated systems.

What comes next, is an initial proposal of the methods, the above Interfaces are
going to expose, along with a sort description for each on of them

4. Front End Interface

The purpose of this interface is to provide the appropriate methods for
account manipulation such as account creation, modification, and account
information retrieval. These methods are going to be exposed in the form of Web
Service calls.

4.1. Create Account

The intention of Create Account service is to create a new Account. The
responsibility of account creation remains always to the “Shop” application.

Parameters

Name Type Mandatory Description

accountId Integer Yes The ID of this account. The
system that initially created
the account is responsible for
the creation of this ID.

userName String Yes This value has to be unique
to the billing system.

password String Yes A non empty string for user
authentication. Any
restrictions concerning the
format of password remains
in the responsibility of
“Shop” application.

category String Yes

status String Yes The activation status of
customer.

currency String No

billingAddress String No Billing Address

billingCity String No Billing City

billingPostCode String No Zip Code for the Billing.

billingCountry String No Billing Country.

contactPhone String No

mobilePhone String No

email String No This parameter is essential in
the case that customer
wanted to have bills in
electronic form.

The system responds with a Boolean value denoting the success or failure of
the requested service.

The following table describes the acceptable values for the property status
and their meaning.

Value Description

0 Suspended

1 Active

-1 Deactivated

4.2. Get Account Information

The intention of Get Account Info service is to inform the “Shop” application
about the current status of any given account.

Parameters

Name Type Description

accountId Integer The id of account

The following table summarizes the properties that will be returned from the

Billing as a response to Get Account Info.

Please note that for any property not defined during the account creation
with createAccount service or its value was changed to null with a later
setAccountInfo service, will not appear to the response.

The answer in the success case is:

Return Properties

Name Type Description

accountId Integer

userName String This value has to be unique to the billing
system.

password String

category String

status String

balance Money

currency String

billingAddress String

billingCity String

billingPostCode String

billingCountry String

contactPhone String

mobilePhone String

email String

For a description of the semantics for the above properties, please consult

the description of properties in createAccount service definition.

4.3. Set Account Info

The intention of Set Account Info service is to change the value of properties
already assigned to an account.

Parameters

Name Type Mandatory Description

accountId Integer Yes The id of account. It is used
only for finding the account.
By no means it is allowed to
change

password String No

category String No

status String No

billingAddress String No

billingCity String No

billingPostCode String No

billingCountry String No

contactPhone String No

mobilePhone String No

email String No

Please note that some of the fields that are considered as mandatory for
account creation, are not present here. An example is the username which must be
unique throughout the billing system, as well as balance and currency information.

For a complete description of parameter semantics see the parameters table
of create account service.

4.4. Get Usage Events

The intention of Get Usage Events is to return a list of usage events for a
specific account between a certain period of time.

Parameters

Name Type Mandatory Description

accountId Integer Yes This is the accountId that has been
created in the CRM.

fromDate Date No Specifies from which date and time
the function will return usage events
for the account. If this parameter is
not passed, the function returns all
the available usage events for the
account until toDate (if toDate has
been specified) (see Date below)

toDate Date No Specifies until which date and time
the function will return usage events
for the account. If this parameter is
not passed, we will get all usage
events for the account from fromDate
(if fromDate has been specified) until
present. (see Date below)

In case that both fromDate and toDate are missing, the function returns all
the usage events for the account specified.

Important!! If we don’t want to specify neither fromDate nor toDate, we
have to pass an empty array to query Items and not null.

Return Properties

Type Description

UsageEvent[] An array of UsageEvent (see UsageEvent below)

4.5. Get Payment Events

The intention of Get Payment Events is to return a list of payment events for
a specific account between a certain period of time.

Parameters

Name Type Mandatory Description

AccountId Integer Yes This is an accountId that has been
created in the CRM.

fromDate Date No Specifies from which date and time
the function will return payment
events for the account. If this
parameter is not passed, the
function returns all the available
payment events for the account
until toDate (if toDate has been
specified) (see Date below)

toDate Date No Specifies until which date and time
the function will return payment
events for the account. If this
parameter is not passed, we will
get all payment events for the
account from fromDate (if
fromDate has been specified) until
present. (see Date below)

In case that both fromDate and toDate are missing, the function returns all

the payment events for the account specified.

Important!! If we don’t want to specify neither fromDate nor toDate, we
have to pass an empty array to query Items and not null.

Return Properties

Type Description

PaymentEvent[] An array of Payment Event (see PaymentEvent in
Glossary)

5. Network Interface

The purpose of this interface is to provide the appropriate methods for
service handling, such as service availability requests, service provisioning, service
cancellations and any other service related method needed. These methods are
using the Authorization and Accounting modules.

5.1. Service Availability Request

The intention of Service Availability Request is to do an enquiry, whether a
certain kind of service is available, given a specific account

Parameters

Name Type Description

Accounted Integer

serviceId Integer The Id of the selected Service

serviceName String

serviceType Integer

The answer in the success case is:

Name Type Description

Amount Number The current balance of Account

Price Money The price of the requested service

serviceProvisioningValid Boolean True if this service can be provided to the
current account. False otherwise

5.2. Start Service Provisioning

The intention of Start Service Provisioning Request is to start service
provisioning given a specific account

Parameters

Name Type Description

accountId Integer

Username String User name of a registered account

Password String Password of a registered account

serviceId Integer

serviceName String

serviceType Integer

The answer in the success case is:

Name Type Description

Amount Number The current balance of Account

Price Number The price of the requested service

startDate Date The date from which , this service is going
to be available to this account

endDate Date The expiration date of this service for the
given account

transactionId String Unique id specifying the service
provisioning request.

5.3. Service Provisioning Completed

The intention of Stop Service Provisioning Request is to stop service

provisioning given a specific account and a transaction id

The complete transaction sequence in a case that a provision of service was
completed normally, is explained in the following diagram.

Parameters

Name Type Description

accountId Integer

transactionId String

The answer in the success case is:

Name Type Description

amount Number The current balance of Account

price Number The price of the requested service

5.4. Service Provisioning Canceled

The intention of Cancel Service Provisioning Request is to cancel service

provisioning given a specific account and a transaction id

The complete transaction sequence in a case that a provision of service was
cancelled abnormally, before the complete provisioning is explained in the following
diagram.

Parameters

Name Type Description

accountId Integer

transactionId String

The answer in the success case is:

Name Type Description

Amount Number The current balance of Account

Price Number The price of the requested service

6. Accounting Interface

The purpose of this interface is to provide the appropriate methods for
accounting actions such as acquiring financial and usage data per customer for a
given time period interface. Accounting module is used for this interface’s methods.

6.1. Get Account Totals

The intention of Get Account Totals is to return the credit and debit
summaries for a specific account between a certain period of time.

Parameters

Name Type Mandatory Description

accountId Integer Yes This is the accountId that has been
created in the CRM.

fromDate Date No Specifies from which date and time the
function will return financial data for
the account. If this parameter is not
passed, the function returns all the
available financial data for the account
until toDate (if toDate has been
specified) (see Date below)

toDate Date No Specifies until which date and time the
function will return financial data for
the account. If this parameter is not
passed, we will get all financial data for
the account from fromDate (if
fromDate has been specified) until
present. (see Date below)

In case that both fromDate and toDate are missing, the function returns full

summaries for the account specified.

Return Properties

Type Description

credit The summary of credit for the given period and
account.

debit The summary of debit for the given period and

account.

6.2. Get Account Details

The intention of Get Account Details is to return a list of financial data for a
specific account between a certain period of time.

Parameters

Name Type Mandatory Description

accountId Integer Yes This is the accountId that has been
created in the CRM.

fromDate Date No Specifies from which date and time the
function will return financial data for
the account. If this parameter is not
passed, the function returns all the
available financial data for the account
until toDate (if toDate has been
specified) (see Date below)

toDate Date No Specifies until which date and time the
function will return financial data for
the account. If this parameter is not
passed, we will get all financial data for
the account from fromDate (if
fromDate has been specified) until
present. (see Date below)

In case that both fromDate and toDate are missing, the function returns all

the financial data for the account specified.

Return Properties

Type Description

FinancialData [] An array of Financial Data (see FinancialData in
the Glossary)

6.3. Get Totals

The intention of Get All Account Totals is to return the credit and debit
summaries for all registered accounts between a certain period of time.

Parameters

Name Type Mandatory Description

fromDate Date No Specifies from which date and time the
function will return summaries for all of
the accounts. If this parameter is not
passed, the function returns summaries
until toDate (if toDate has been
specified) (see Date below)

toDate Date No Specifies until which date and time the
function will return summaries for all of
the accounts. If this parameter is not
passed, the function returns summaries
from fromDate (if fromDate has been
specified) until present. (see Date below)

In case that both fromDate and toDate are missing, the function returns full
summaries for all registered accounts.

Return Properties

Type Description

credit The full summary of credit for all registered
accounts and the given period.

debit The full summary of debit for all registered
accounts and the given period.

6.4. Get All Account Totals

The intention of Get Totals is to return a list of credit and debit summaries for
all registered accounts between a certain period of time.

Parameters

Name Type Mandatory Description

fromDate Date Yes Specifies from which date and time the
function will return summaries for all
registered accounts. If this parameter is not
passed, the function returns summaries for
all registered accounts until toDate (if
toDate has been specified) (see Date
below)

toDate Date Yes Specifies until which date and time the
function will return summaries for all
registered accounts. If this parameter is not
passed, the function returns summaries for
all registered accounts from fromDate (if
fromDate has been specified) until present.
(see Date below)

In case that both fromDate and toDate are missing, the function returns
summaries for all registered accounts.

7. Reference

7.1. Glossary

Term Definition

WSDL Web Service Definition Language. An XML based
document which describes the available operations
for the specific Web Service.

CRM Customer Relationship Management. A system
responsible for the communication with customers.
Usually these systems they gather information from
other BSS and present an integrated view to users.

Network Element
North Bound
South Bound
J2EE This is the code name for the Java applications

targeted to Enterprise environments and they are
ready to deployed in Application Servers.

Web Service Web Service. This is common language for different
technology platforms to communicate through the
web, sending messages in XML format, using Http
communication protocol

BSS Business Support System. An abstract terminology
for those systems that supports the business of
companies. In TelCo industry, such kind of systems
are CRM, ERP, Billing e.t.c

OSS Operation Support System. An abstract terminology
for those systems that support the operation of
companies. In TelCo industry, such kind of systems
are the Network Access Elements, Service
providers, e.t.c

7.2. Data Types

The following table describes all the data types that have been referenced in
this document. Complex data type they have their own separate description whether
this is necessary.

Type Description

Integer The usual representation of Integer as described by Java JLS
specification

String The typical String data type.

Numeric Represents numeric values with decimal point.

Property Is a set of two strings. The first one shows the name of the
value and the second one is the value. (see wsProperty
below)

Money Represents monetary amounts with currency. Its form is a
string consisted by a numeric value followed by a space
character and the country currency code according to ISO
4217. (e.g. 52.22 EUR)

Volume Represents Is a string containing a numeric value. In case of
a voice call contains the number of seconds the call lasted.
In case of SMS contains the number of SMS rated.

UsageEvent Represents usage events that happened to an account. (see
UsageEvent below)

Usage Type It is a string that describes the type of the usage.

Date It is a string that describes a certain point of time. The
format of the string must be:
«yyyy-MM-dd HH:mm:ss»

PaymentEvent Represents payment events that happened to an account.
(see Payment Event below)

FinancialData Represents finance data they were created as result of
either a Usage Event or Payment Event. (see FinancialData
below)

7.3. PaymentEvent

 A Payment Event is an event that produced from a payment for a specific
account. Shylock produces various types of Payment Events. A Payment Event gives
detailed information for a specific account concerning the type of service he/she
used, the price the customer was charged for this service etc.

Name Type Description

paymentId Integer A unique id of this payment event

accountId Integer This is the accountId of a customer
that is stored in the CRM.

amount Money

eventType Integer 1=SMS
2=OTE
3=Credit Card

transDate Date The date and time the system was
informed about this payment event.

dueDate Date The date the payment transaction
took place.

transactionId String A unique id, used to correlate the
specific event between two
different systems

7.4. UsageEvent

 Any service that is provided to customer creates one or more usage events.
These usage events hold detailed information about the type of the provided
service.

Name Type Description

usageId Integer A unique id of this usage event

accountId Integer

usageType String Type of usage.

usageStartTime Date When the usage event started

usageEndTime Date When the usage event ended

usageVolume Volume

usagePrice Money The amount of money, charged to the
account.

usageStatus Integer Reserved for internal use

transactionId String A unique id, used to correlate the
specific event between two different
systems

7.5. FinancialData

Financial Data is an object holding all the necessary information for a
financial system which produced from a “financial” event.

As “financial events” we consider any UsageEvent or PaymentEvent. The
Financial Data structure is a virtual structure produced from Shylock

Name Type Description

paymentId Integer A unique id of this payment event

accountId Integer This is the accountId of a customer
that is stored in the CRM.

amount Money

eventType Character C=Credit
D=Debit

dueDate Date The date the financial event took
place.

transactionId String A unique id, used to correlate the
specific event between two
different systems

7.6. Example WSDL

The following WSDL is an example of the operation Get Usage Events. It does

not consist a full working example.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://ws.bobss.rege.org"

xmlns:tns="http://ws.bobss.rege.org"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soapenc11="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenc12="http://www.w3.org/2003/05/soap-encoding"

xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

attributeFormDefault="qualified" elementFormDefault="qualified"

targetNamespace="http://ws.bobss.rege.org">

 <xsd:complexType name="SimpleUsageEvent">

 <xsd:sequence>

 <xsd:element minOccurs="0"

name="accountId" nillable="true" type="xsd:int"/>

 <xsd:element minOccurs="0" name="date"

type="xsd:dateTime"/>

 <xsd:element minOccurs="0"

name="destination" nillable="true" type="xsd:string"/>

 <xsd:element minOccurs="0"

name="duration" type="xsd:int"/>

 <xsd:element minOccurs="0" name="price"

type="xsd:double"/>

 <xsd:element minOccurs="0"

name="source" nillable="true" type="xsd:string"/>

 <xsd:element minOccurs="0"

name="usageId" type="xsd:int"/>

 <xsd:element minOccurs="0"

name="usageType" nillable="true" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="getUsageEvents">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="1"

minOccurs="1" name="in0" type="xsd:int"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="ArrayOfSimpleUsageEvent">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded"

minOccurs="0" name="SimpleUsageEvent" nillable="true"

type="tns:SimpleUsageEvent"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="getUsageEventsResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="1"

minOccurs="1" name="out" nillable="true"

type="tns:ArrayOfSimpleUsageEvent"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </wsdl:types>

 <wsdl:message name="getUsageEventsRequest">

 <wsdl:part name="parameters"

element="tns:getUsageEvents">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="getUsageEventsResponse">

 <wsdl:part name="parameters"

element="tns:getUsageEventsResponse">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="SimpleCrmAccountManagerPortType">

 <wsdl:operation name="getUsageEvents">

 <wsdl:input name="getUsageEventsRequest"

message="tns:getUsageEventsRequest">

 </wsdl:input>

 <wsdl:output name="getUsageEventsResponse"

message="tns:getUsageEventsResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="SimpleCrmAccountManagerHttpBinding"

type="tns:SimpleCrmAccountManagerPortType">

 <wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getUsageEvents">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getUsageEventsRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="getUsageEventsResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SimpleCrmAccountManager">

 <wsdl:port name="SimpleCrmAccountManagerHttpPort"

binding="tns:SimpleCrmAccountManagerHttpBinding">

 <wsdlsoap:address

location="http://127.0.0.1:8080/bo-bss-ws-

0.1/services/SimpleCrmAccountManager"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

